Spin Control of Drifting Electrons using Local Nuclear Polarization in Ferromagnet-Semiconductor Heterostructures¹ M.E. NOWAKOWSKI, G.D. FUCHS, S. MACK, D.D. AWSCHALOM, Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA 93106, N. SAMARTH, Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 — We demonstrate a spatially-confined magnetic field gate to modulate the Larmor frequency of an optically-injected spin ensemble drifting down a GaAs channel [1]. The gate is activated either optically or electrically and polarizes GaAs nuclear spins at the interface between a lithographically-defined MnAs island and the channel via the ferromagnetic proximity polarization effect. We measure the rotation angle of the spin ensemble as it emerges from the polarized region using time-resolved Kerr rotation. The ensemble’s spin rotation angle can be tuned by up to 5π radians as the spins travel over 30 μm by controlling the nuclear field strength and adjusting the drift velocity.

¹Work supported by ONR and NSF.