Topological superconductivity and Majorana fermions in half-metal / superconductor heterostructure1 SUK BUM CHUNG, HAI-JUN ZHANG, XIAO-LIANG QI, SHOUCHENG ZHANG, Stanford University — A half-metal is by definition spin-polarized at its Fermi level and therefore was conventionally thought to have little proximity effect to an s-wave superconductor. Here we show that if there is spin-orbit coupling at the interface between a single-band half-metal and an s-wave superconductor, $p_x + i p_y$ superconductivity would be induced on the half-metal. This can give us topological superconductor with a single chiral Majorana edge state. We show that two atomic layers of CrO$_2$ or CrTe gives us the single-band half-metal and is thus a candidate material for realizing this physics.

1This work is supported by DOE under contract DE-AC02-76SF00515, the Sloan Foundation, and NSF under grant number DMR-0904264

Suk Bum Chung
Stanford University

Date submitted: 19 Nov 2010

Electronic form version 1.4