Evidence of an Intermediate Phase in bulk alloy oxide glasses

S. CHAKRABORTY, P. BOOLCHAND, University of Cincinnati — Reversibility windows have been observed in modified oxides (alkali-silicates and -germanates) and identified with Intermediate Phases (IPs). Here we find preliminary evidence of an IP in a ternary oxide glass, (B$_2$O$_3$)$_5$(TeO$_2$)$_{95-x}$(V$_2$O$_5$)$_x$, which is composed of network formers. Bulk glasses are synthesized across the 18% < x < 35% composition range, and examined in Raman scattering, modulated DSC and molar volume experiments. Glass transition temperatures T$_g$(x) steadily decrease with V$_2$O$_5$ content x, and reveal the enthalpy of relaxation at T$_g$ to show a global minimum in the 24% < x < 27% range, the reversibility window (IP). Molar volumes reveal a minimum in this window. Raman scattering reveals a Boson mode, and at least six other vibrational bands in the 100 cm$^{-1}$ < ν < 1700 cm$^{-1}$ range. Compositional trends in vibrational mode strengths and frequency are established. These results will be presented in relation to glass structure evolution with vanadia content and the underlying elastic phases.

1Supported by NSF grant DMR 08-53957.