Criticality in Trapped Atomic Systems1 NIKOLAY PROKOFIEV, BORIS SVISTUNOV, Department of Physics, University of Massachusetts, Amherst, LODE POLLET, Theoretische Physik, ETH Zurich — We discuss generic limits posed by the trap in atomic systems on the accurate determination of critical parameters for second-order phase transitions, from which we deduce optimal protocols to extract them. We show that under current experimental conditions the in-situ density profiles are barely suitable for an accurate study of critical points in the strongly correlated regime. Contrary to recent claims, the proper analysis of time-of-flight images yields critical parameters accurately. L. POllet, N. Prokof’ev, and B. Svistunov, Phys. Rev. Lett. 104, 245705 (2010).

1Swiss National Science Foundation, the National Science Foundation under Grant PHY-0653183, and a grant from the Army Research Office with funding from the DARPA OLE program