From the Meissner Effect to the Isotope Effect: Precursors to the Microscopic Theory of Superconductivity
BRIAN SCHWARTZ, The Graduate Center of CUNY

After the discovery by Kamerlingh Onnes in 1911 of the low temperature disappearance of resistance in mercury to a state of perfect conductivity, there was a long period of more than two decades before there was a major experimental advance. In 1933, Meissner and Ochsenfeld discovered that a superconductor is not only a perfect conductor but in addition it is a perfect diamagnet. In 1935 F. and H. London presented a phenomenological understanding of the electromagnetic properties of the superconducting state, which included the London penetration depth for applied magnetic fields and later introduced the concept of a “stiffness” of the superconducting wave function. In 1950, Ginzburg and Landau developed a phenomenological theory for the superconducting state using general thermodynamic arguments. In the same year, Maxwell, and Serin et.al discovered the Isotope Effect which indicated that the electron-phonon interaction would play an important role in the theory of superconductivity.