Spin-orbit coupled Bose-Einstein condensates with lattice-band pseudospins

PETER ENGELS, M. A. KHAMEHCHI, Washington State University, CHUNLEI QU, University of Texas at Dallas, MAREN MOSSMAN, Washington State University, CHUANWEI ZHANG, University of Texas at Dallas — Dilute-gas Bose-Einstein Condensates provide a flexible platform to model a wide variety of condensed matter phenomena. To this goal, dressing atoms with suitably tailored laser beams is a premier tool and can be used to generate spin-orbit coupling, artificial gauge fields, and lattice structures. In this talk, a set of recent and ongoing experiments conducted at Washington State University will be described in which we apply both static and moving optical lattices to form Floquet-Bloch states. The s-band and the px-band of the static lattice are considered pseudospins, and it is shown that spin-orbit coupling can be introduced between such lattice band pseudospins. The notion of lattice band pseudospins provides a new viewpoint for quantum gas experiments that may pave the way for engineering novel quantum matter using hybrid orbital bands.

1Supported by NSF
2currently at the University of Trento, Italy

Peter Engels
Washington State University

Date submitted: 04 May 2016

Electronic form version 1.4