Abstract Submitted for the SHOCK05 Meeting of The American Physical Society

On the Initiation Mechanism in Exploding Bridgewire and Laser Detonators

D. SCOTT STEWART, MIE, University of Illinois, Urbana, IL, K. THOMAS, S. CLARKE, H. MALLET, M MARTINEZ, A. MUNGER, DX-1, Los Alamos National Laboratory, J. SAENZ, TAM, University of Illinois — Since its invention by Los Alamos during the Manhattan Project era the exploding bridgewire detonator (EBW) has seen tremendous use and study. Recent development of a laser-powered device with detonation properties similar to an EBW is reviving interest in the basic physics of the Deflagration-to-Detonation (DDT) process in both of these devices,[1]. Cutback experiments using both laser interferometry and streak camera observations are providing new insight into the initiation mechanism in EBWs. These measurements are being correlated to a DDT model of compaction to detonation and shock to detonation developed previously by Xu and Stewart, [2]. The DDT model is incorporated into a high-resolution, multi-material model code for simulating the complete process. Model formulation and predictions against the test data will be discussed. REFS. [1] A. Munger, J. Kennedy, A. Akinci, and K. Thomas, Dev. of a Laser Detonator, 30th Int. Pyrotechnics Seminar, Fort Collins, CO, (2004). [2] Xu, S. and Stewart, D. S. Deflagration to detonation transition in porous energetic materials: A model study. J. Eng. Math., 31, 143-172 (1997)

1Supported by DOE/LANL

D. Scott Stewart
MIE, University of Illinois, Urbana, IL

Date submitted: 04 Apr 2005
Electronic form version 1.4